15

SISTEM INFORMASI
MANUFAKTUR
TUJUAN PEMBAHASAN

Setelah mempelajari bab ini, anda akan:

* Mengenal usaha pokok untuk mengotomatisasi pabrik, yang meliputi CAD/ CAM dan penggunaan robot
* Memahami konsep perencanaan keperluan bahan (MRP) dan perencanaan sumber manufaktur (MRP II)
* Memahami fasilitas dasar pendekatan just-in-time (JIT) terhadap manufaktur
* Mengenal kontribusi yang dapat dibuat oleh jaringan pengumpulan data dalam mengumpulkan data hadir dan pekerjaan secara real-time
* Mengetahui bahwa tugas insinyur industri berkaitan dengan sistem manufaktur fisik dan konseptual
* Mengetahui bagaimana prosedur formal dalam pengumpulan informasi pemasok memberikan kontribusi terhadap pemenuhan jadwal manufaktur dan pencapaian tingkat kualitas yang dikehendaki
* Memahami dasar manajemen inventarisasi
* Mengetahui cara perusahaan dalam mempengaruhi tingkat kualitas produksinya
* Memahami bagaimana sistem informasi manufaktur dapat digunakan untuk membuat keputusan mengenai lokasi pabrik
* Mengetahui potensi pemberian informasi mengenai berbagai pembiayaan produksi yang spesifik dan up-to-date mengenai kepada manajer manufaktur
* Mengetahui trend dalam sistem manufaktur berdasarkan komputer yang diharapkan akan terjadi pada tahun 1990-an
PENDAHULUAN

Pada bab sebelumnya, kita mengetahui bahwa pemasaran mempunyai tanggung jawab untuk menentukan keinginan dan kebutuhan konsumen. Bila penentuan ini telah dibuat, maka eksekutif perusahaan memutuskan untuk membuat produk yang akan memenuhi keinginan dan kebutuhan tersebut, dan pembuatan produk ini menjadi tanggung jawab fungsi manufaktur.

Topik pembahasan kita dalam bab ini adalah proses manufaktur. Kita akan memulai bab ini dengan melihat bagaimana komputer digunakan untuk meningkatkan sistem manufaktur fisik. Penggunaan komputer ini meliputi computer-aided-design (CAD) atau komputer untuk desain, computer-aided-manufacturing (CAM) atau komputer untuk manufaktur, dan penggunaan robot. Kemudian, kita akan melihat kembali evolusi yang terjadi dalam sistem informasi manufaktur, dengan melakukan pembahasan mengenai sistem reorder point (ROP) atau sistem point pemesanan kembali, material requirements planning (MRP) atau perencanaan persyaratan bahan, manufacturing resource planning (MRP II) atau perencanaan sumber manufaktur, dan sistem just-in-time (JIT).

Kita akan menggunakan model grafik sebagai dasar pembahasan kita terhadap sistem informasi manufaktur, yaitu sistem konseptual yang digunakan untuk mengelola sistem manufaktur fisik. Kita akan membahas setiap subsistem input (pemrosesan data, teknik mesin industri, dan inteligensi manufaktur) dan subsistem output. Setiap subsistem output merefleksikan dimensi proses manufaktur. Subsistem produksi berkaitan dengan waktu, subsistem inventarisasi berkaitan dengan volume, dan subsistem kualitas dan pembiayaan berkaitan dengan dimensi tersebut.

Kita akan mengakhiri bab ini dengan membahas trend yang digunakan untuk memadukan semua aplikasi berdasarkan komputer dalam manufaktur, yaitu konsep yang diberi nama CIM (computer-integrated manufacturing) atau manufaktur komputer terpadu.

KOMPUTER DALAM MANUFAKTUR

Juga, banyak pekerjaan yang dilakukan oleh mesin, yang berfungsi untuk memindahkan bahan di sepanjang pabrik, dan mesin ini juga digunakan untuk mentransformasi bahan menjadi produk.

KOMPUTER SEBAGAI BAGIAN DARI SISTEM FISIK

Pada area produksi, pengontrolan mesinnya telah banyak dilakukan dengan menggunakan komputer. Mesin ini dapat melakukan pekerjaan yang sebelumnya dikerjakan oleh manusia. Penggunaan mesin ini biayanya lebih murah dibandingkan dengan manusia dan dalam beberapa hal, mesin dapat menjalankan pekerjaan dengan lebih baik. Usaha dalam mengotomatisasi pabrik pada mulanya mendapat tantangan dari serikat pekerja. Namun, pada akhirnya tantangan ini lama-lama berkurang setelah adanya fakta yang jelas bahwa bidang industri harus memanfaatkan teknologi komputer jika ia ingin dapat bersaing di pasaran dunia.

KOMPUTER UNTUK DISAIN (CAD)

Computer-aided design (komputer untuk disain) atau CAD, yang seringkali disebut computer-aided engineering (CAE), melibatkan penggunaan komputer untuk membantu dalam perancangan produk yang akan diproduksi. CAD pertama kali diterapkan pada industri pesawat ruang angkasa sekitar tahun 1960, dan selanjutnya ia diterapkan pada pabrik mobil. Akhirnya, ia digunakan untuk merancang segala struktur yang kompleks, seperti bangunan dan jembatan pada bagian yang kecil.

Pada Bab 5, kita telah melihat seorang insinyur disain pada Gambar 5.18, yang menggunakan terminal CRT yang dilengkapi light pen khusus yang digunakan
sebagai input. Insinyur tersebut menggunakan pen untuk membuat sket disain pada layar, dan software CAD memperhalus gambar atau sket tersebut dengan memperjelas dan meluruskan garisnya. Bila disain tersebut telah dimasukkan ke dalam komputer, insinyur tersebut dapat menguji disain tersebut untuk mendeteksi point yang tidak sesuai. Software CAD bahkan bisa memindahkan bagiannya ketika ia sedang digunakan. Ketika disain tersebut telah selesai, software CAD dapat membuat spesifikasi yang lengkap yang akan digunakan untuk membuat produk dan menyimpan spesifikasi itu dalam database disain.

KOMPUTER UNTUK MANUFAKTUR (CAM)

Computer-aided manufacturing (komputer untuk manufaktur) atau CAM adalah aplikasi komputer yang digunakan untuk membuat produk yang terancang. Alat mesin khusus yang dikontrol oleh komputer menghasilkan produk dengan menggunakan spesifikasi yang diperoleh dari database disain. Beberapa alat mesin mempunyai mikroprosesor yang telah terbangun di dalamnya, dan beberapa diantaranya dikontrol oleh minikomputer. Sebuah minikomputer dapat mengontrol beberapa alat mesin sekaligus.

Sebagian besar otomatisasi pabrik sekarang ini disertai teknologi CAM. Produksi dapat berlangsung dengan lebih cepat dan dengan presisi yang lebih besar dari pada bila kontrol tersebut dilakukan oleh manusia. Presisi yang lebih besar memungkinkan berkurangnya hambatan terjadinya kesesuaian dengan komponen mesin dan mengurangi sisa bahan yang tak berguna.

PEROBOTAN

Aplikasi komputer lain dalam pabrik melibatkan penggunaan industrial robot (robot industri) atau IR. Penggunaan ini disebut robotics (perobotan). Robot, seperti yang terlihat pada Gambar 15.1, dikenalkan oleh industri mobil sekitar tahun 1974 dan, seperti halnya CAD dan CAM, ia berkembang ke berbagai industri yang lain.

Perusahaan yang menggunakan robot terutama bertujuan untuk mengurangi biaya, namun seringkali mereka menggunakanannya untuk melakukan pekerjaan yang mengandung risiko, seperti melakukan pekerjaan di tempat yang bertemperatur tinggi. Aplikasi yang terkenal adalah dengan cara memasukkan bahan ke peralatan mesin yang diotomatisasi oleh CAM.

Gambar 15.2 menunjukkan hubungan umum antara CAD, CAM, dan perobotan
Gambar 15.1 Robot industri

KOMPUTER SEBAGAI SISTEM INFORMASI

Manajer manufaktur membutuhkan informasi untuk menciptakan maupun untuk mengoperasikan sistem produksi fisik. Kita menggunakan nama sistem informasi manufaktur untuk menjelaskan subsistem CBIS yang memberikan informasi yang dibutuhkan itu.

Gambar 15.2 CAD, CAM, dan Perobotan

SISTEM POINT PEMESANAN KEMBALI (ROP)

Setelah komputer pertama berhasil diterapkan di dalam bidang accounting, ia kemudian digunakan oleh manajer manufaktur untuk membantunya dalam
mengontrol inventarisasi dan menjadwal produksi. Cara pertama adalah dengan pendekatan reaktif dengan menunggu keseimbangan item untuk mencapai point pemesanan kembali dan kemudian menggerakkan atau memicu pesanan pembelian atau memicu proses produksi. Sistem seperti itu disebut reorder point system (sistem point pemesanan kembali).

Gambar 15.3A adalah diagram aktivitas inventarisasi sepanjang waktu. Bentuk mata gergaji menggambarkan bagaimana stok sedikit demi sedikit habis, baik karena digunakan untuk proses manufaktur (jika ia merupakan bahan mentah) ataupun karena aktivitas penjualan (jika stok tersebut berupa barang jadi). Menurut diagram tersebut, segera setelah keseimbangan yang ada turun sampai nol, penambahan stok kembali datang dari pemasok, dan keseimbangan yang ada balik ke tingkat tertinggi. Siklus ini berjalan berulang-ulang.

Gambar 15.3A menggambarkan keadaan yang ideal, yaitu penambahan stok kembali datang tepat pada waktu terjadi kondisi kekosongan. Stockout (kekosongan stok) berarti tidak ada inventarisasi. Perusahaan mengantisipasi kekosongan stok dan melakukan pesanan sebelum terjadi kekosongan stok. Pesanan tersebut dilakukan ketika keseimbangan yang ada mencapai point pemesanan kembali. Reorder point (point pemesanan kembali) atau ROP, juga disebut order point (point pemesanan), adalah keseimbangan yang ada yang memicu pemesanan untuk menambah stok. Waktu yang dibutuhkan oleh pemasok untuk memenuhi pemesanan tersebut disebut lead time.

Perusahaan biasanya melakukan pemesanan sebelum stok habis sama sekali, seperti terlihat pada Gambar 15.3A. Dengan demikian selalu ada kesempatan bagi perusahaan untuk melakukan kegiatanannya sambil menunggu pengiriman dari pemasok yang belum datang, atau penggunaan stok akan dikuurangi selama jangka lead time. Jika kekosongan stok terjadi, perusahaan tidak dapat menjual item atau menjalankan produknya, yang hal ini akan mengakibatkan bencana. Dengan pengukuran yang teliti, maka bisa dilakukan pencadangan jumlah inventarisasi ekstra. Inventarisasi ekstra ini disebut safety stock (stok pengaman) dan ia ditunjukkan pada Gambar 15.3B. Perusahaan berharap tidak akan pernah menggunakan stok pengamannya, namun ia akan digunakan bila sangat diperlukan, seperti halnya ban serep.

Manajer manufaktur tidak perlu memikirkan kemana akan menempatkan ROP karena ia dapat dihitung dengan rumus berikut ini:
\[R = LU + S \]

Dengan:
- \(R \) = point pemesanan kembali
- \(L \) = lead time pemasok (dalam hari)
- \(U \) = angka penggunaan (jumlah unit yang digunakan atau yang dijual per hari)
- \(S \) = tingkat stok pengaman (dalam unit)

Gambar 15.3 Point pemesanan kembali tanpa stok pengaman dan dengan stok pengaman
Sebagai contoh, misalkan pemasok membutuhkan waktu empat belas hari untuk memenuhi pesanan bahan, dan anda menggunakan sepuluh unit per hari, maka anda akan menggunakan 140 unit sementara anda menunggu pemasok memenuhi pesanan tersebut. Tambahan stok pengaman menjadi enam belas, dan point pemesanan kembali adalah 156.

PERENCANAAN KEPERLUAN BAHAN (MRP)

Pada awal tahun 1960-an, Joseph Orlicky dari J.I. Case Company menemukan pendekatan baru mengenai manajemen bahan, yang disebut material requirements planning (perencanaan keperluan bahan) atau MRP. MRP adalah suatu strategi bahan proaktif. Dari pada menunggu sampai waktu pemesanan, MRP mempertimbangkan apa yang akan datang dan mengantisipasi kebutuhan bahan masa yang akan datang. Program MRP menganalisis adwal produksi yang akan datang dan mengidentifikasi bahan yang akan dibutuhkan, yaitu mengenai kuantitasnya dan tanggal kapan bahan tersebut diperlukan.

Gambar 15.4 melukiskan komponen utama dari sistem MRP. Nomor sistem berikut ini sesuai dengan nomor yang ada pada gambar tersebut.

1. Sistem penjadwalan produksi menggunakan empat file data untuk membuat jadwal produksi induk. Data input meliputi file The Customer Order, file Sales Forecast, file Finished-Goods Inventory, dan file Production Capacity. **Master production schedule** (jadwal produksi induk) memproyeksikan produksi yang jauh ke depan untuk mengakomodasi proses produksi dengan memperhitungkan kombinasi lead time pemasok dan waktu produksi yang terlama. Adalah tidak umum bagi jadwal produksi yang diperuntukkan selama lebih dari satu tahun yang akan datang.

mengidentifikasi net requirements (keperluan bersih), yaitu item yang harus dibeli untuk memenuhi jadwal produksi.

3. Sistem perencanaan keperluan bahan bekerja sama dengan sistem perencanaan keperluan kapasitas untuk memastikan bahwa produksi yang telah terjadwal akan sesuai dengan kapasitas pabrik. Setelah penentuan ini dibuat, sistem perencanaan keperluan bahan menghasilkan beberapa output. Output utamanya adalah planned order schedule (jadwal pesanan terencana), yang mendaftar kuantitas dari tiap-tiap bahan yang diperlukan berdasarkan jangka waktunya. Output yang lainnya meliputi:

* Perubahan terhadap pesanan yang telah direncanakan - yang merefleksikan pembatalan pesanan, pengurangan pesanan, pengubahan jumlah pesanan.

* Laporan pengecekan - yang menandai item yang membutuhkan perhatian dari manajemen.

* Laporan penampilan - yang menunjukkan sejauh mana sistem bekerja, kaitannya dengan kekosongan stok dan ukuran yang lain.

* Laporan perencanaan - yang dapat digunakan oleh manajemen manufaktur untuk perencanaan inventarisasi masa yang akan datang.

4. Sistem pengeluaran pesanan menggunakan jadwal pesanan terencana untuk input dan mencetak dua order release report (laporan pengeluaran pesanan). Satu laporan untuk pembeli yang berada di departemen pembelian, yang akan digunakan untuk bernegosiasi dengan pemasok, dan yang satunya untuk manajer manufaktur, yang akan digunakan untuk mengontrol proses produksi.

Kita dapat melihat bahwa metode MRP lebih unggul dibandingkan dengan ROP. Perusahaan dapat melakukan tugas pengelolaan bahannya dengan lebih baik. Ia dapat menghindari dari terjadinya kekosongan stok yang disebabkan karena harus menunggu sampai detik yang terakhir dan yang disebabkan karena penambahan stok belum ada. Juga, dengan mengetahui kebutuhan bahan yang akan datang, dengan MRP kita dapat mengegoisakan perjanjian pembelian dengan pemasok dan menerima potongan harga atas jumlah barang yang dibelinya.

Walaupun sejumlah besar perusahaan telah mengimplementasikan MRP, hanya sedikit diantaranya yang mengetahui manfaat lainnya. Pengalaman menunjukkan bahwa MRP lebih cocok dengan lingkungan produksi tertentu. Banyak perusahaan yang masih menggunakan MRP untuk mengelola bahan-bahan mereka, namun perusahaan yang lain telah meninggalkan sistem untuk penggunaan seperti itu atau
memperluas konsepnya dengan harapan untuk memperoleh manfaat yang lebih besar darinya.

Gambar 15.4 Sistem MRP

PERENCANAAN SUMBER MANUFAKTUR (MRP-II)

Oliver Wight dan George Plossl, partner konsultan, diakui sebagai orang yang melakukan perluasan konsep MRP atas area manufaktur, sehingga MRP dapat mencakup area-area perusahaan yang lain. Hasil perluasan konsep tersebut dinamakan MRP II, dan arti dari singkatan tersebut berubah menjadi *manufacturing resource planning* (perencanaan sumber manufaktur).

Sistem MRP II memadukan semua proses dalam manufaktur yang berkaitan dengan manajemen bahan. Ia juga melakukan interface dengan subsistem CBIS
yang lain, seperti terlihat pada Gambar 15.5. Ia dapat memberikan informasi kepada sistem informasi eksekutif dan kepada sistem informasi fungsional yang lain. Ia juga melakukan pertukaran data dengan subsistem dari sistem perrosesan data, yang terlibat dalam arus bahan, yaitu entri pemesanan, pengajuan rekening, account receivable, pembelian, penerimaan, account payable, dan buku besar umum.

PEDOMAN UNTUK MENGIMPLEMENTASIKAN MRP II

Seperti halnya dengan MRP, tidak semua perusahaan yang telah mengimplementasikan MRP II dapat mencapai harapannya yang maksimal. Studi menunjukkan bahwa tingkat keberhasilan tergantung pada penampilan dalam tiga area, yaitu komitmen manajemen puncak, proses implementasi, dan pemilihan hardware dan software.

1. **Komitmen manajemen puncak** dikemukakan ketika para eksekutif secara aktif ikut ambil bagian dalam steering committee. Pada waktu ini, para eksekutif diharapkan menetapkan MRP II sebagai proyek yang paling diprioritaskan dalam perusahaan, menyusun tujuan pengimplementasian yang jelas, dan menggunakan sistem ini untuk menjalankan bisnis.

2. **Proses implementasi** berlangsung dengan sangat baik bila seluruh area yang ada di perusahaan mempunyai wakilnya dalam team proyek itu, dilakukan analisis keperluan yang lengkap untuk mengidentifikasi kebutuhan pemakai, ditetapkan rencana proyek yang lengkap dengan penetapan orang-orang yang bertanggung jawab atas proyek tersebut, dibuat kontrol yang diperlukan atas sistem produksi fisik, dan ditekankan untuk memberikan pendidikan dan training bagi pemakai.

3. **Pemilihan hardware dan software** dapat dilakukan dengan baik bila RFP (request for proposal) formal dikirimkan kepada semua pemasok hardware dan software yang diminati, dan pemasok-pemasok ranking teratas diminta untuk mendemonstrasikan produknya dengan menggunakan data milik perusahaannya sendiri.

Manfaat MRP II. Bila perusahaan menciptakan sistem tersebut dengan cara-cara di atas, maka ia dapat memperoleh sat atau dua manfaat berikut ini:

* **Penggunaan sumber yang lebih efisien** - Pekerjaan dalam proses dapat dikerangi dan pemanfaatan peralatan pabrik untuk inventarisasi barang jadi dapat dilakukan dengan lebih baik, gangguan kerja dapat diketahui, dan pemeliharaan peralatan dapat dijadwal dengan lebih baik.
Gambar 15.5 Sistem MRP II

* **Perencanaan prioritas yang lebih baik** - Jumlah waktu yang dibutuhkan untuk melakukan produksi dapat dikurangi, dan jadwal produksi dapat dimodifikasi dengan lebih mudah, untuk merefleksikan perubahan kebutuhan pelanggan.

* **Pelayanan pelanggan yang meningkat** - Kemampuan perusahaan untuk memenuhi tanggal pengiriman yang telah dijanjikan dapat lebih tepat, dan ada kesempatan untuk meningkatkan kualitas dan menurunkan harga.

* **Moral pekerja yang meningkat** - Para pekerja mempunyai keyakinan terhadap sistem, dan koordinasi serta komunikasi antar departemen semakin meningkat.

* **Informasi manajemen yang lebih baik** - Informasi dari sistem dapat memberikan wawasan mengenai sistem produksi fisik yang lebih baik bagi manajemen, dan informasi tersebut berguna bagi manajemen untuk mengukur penampilan sistem tersebut. Lebih dari itu, eksekutif perusahaan dan manajer dari semua area
fungsiional dapat melakukan pekerjaan rencana jangka panjangnya dengan lebih baik.

Sekarang ini, sistem MRP II mendominasi aktivitas pada perusahaan-perusahaan di Amerika Serikat dalam menerapkan komputer sebagai sistem informasi. Selama beberapa tahun yang lalu, ia telah bertahan dari adanya sistem atau pendekatan yang telah terkenal di Jepang.

JUST-IN-TIME (JIT)

Pada pertengahan tahun 1980-an, para manajer Amerika Serikat mempelajari manajemen Jepang dan teknik organisasi untuk mendapatkan kunci keberhasilan penjualan mereka. Salah satu teknik tersebut adalah just-in-time atau JIT. JIT menjaga arus bahan ke pabrik agar sampai yang terendah dengan cara menjadwalkan supaya tiba di workstation (stasiun kerja) "just-in-time" (tepat waktu).

Pendekatan atau cara JIT ini adalah kebalikan dari cara produksi massal tradisional Amerika Serikat. Proses yang kita bahas pada Bab 9 mengenai cara pengasemblingan lampu sepeda adalah contoh dari produksi massal. Jalannya produksi mengerjakan sejumlah besar lot size, yaitu sejumlah item yang diproduksi sekaligus. Tujuan dari lot size yang besar ini adalah untuk meminimalkan biaya penyesunan dan biaya produksi dan untuk memperoleh diskon atas jumlah yang dipesan dari pemasok.

Produksi massal juga mengakibatkan biaya inventarisasi yang tinggi. Dalam contoh pembuatan lampu sepeda, perusahaan akan memiliki bahan mentah yang sangat besar, mengerjakan tugas yang banyak dalam proses, dan memiliki inventarisasi barang jadi yang banyak pula. Inventarisasi dalam jumlah besar menggambarkan ukuran investasi dan mengakibatkan berbagai biaya pemeliharaan, seperti asuransi dan keamanan.

JIT berusaha untuk meminimalkan biaya inventarisasi dengan cara memproduksi dalam jumlah yang lebih kecil. Lot size (ukuran tumpukan) yang ideal akan menjadi satu dalam sistem JIT. Satu unit akan bergerak dari workstation ke workstation berikutnya sampai produksinya selesai.

Pengaturan waktu menjadi kunci bagi sistem JIT. Pasokan bahan mentah datang dari pemasok sebelum penjadwalan produksi mulai, tak ada inventarisasi bahan mentah yang perlu dibicara kan. Jumlah bahan mentah yang sedikit diterima sekaligus, karena mungkin pemasok melakukan beberapa kali pengiriman selama satu hari.

Tanda kanban memungkinkan pekerjaan mengalir dengan cepat. Kanban menarik bahan sepanjang proses asembling, kebalik dari cara yang dilakukan lot size besar dalam mendorong jalannya dari stasiun ke stasiun. Karena berkurangnya bahan di dalam arus kerja, maka ruangan kerja bisa lebih dikurangi, dan area kerja bisa lebih rapi.

Gambar 15.6 Kanban
Kebalikannya dengan MRP, yang menekankan perencanaan jangka panjang dan membutuhkan penggunaan komputer, maka JIT menekankan pengaturan waktu dan penggunaan tanda non-komputer.

Baik JIT dan MRP memiliki peluang keberhasilan yang baik bila manajemen menetapkan kontrol perusahaan atas proses produksi dan menjalankan sistem formal secara disiplin.

MODEL SISTEM INFORMASI MANUFAKTUR

Kita akan menggunakan istilah manufacturing information system (sistem informasi manufaktur) untuk membahas semua aplikasi berdasarkan komputer yang telah dikembangkan dalam fungsi manufaktur. Sistem informasi manufaktur bekerja sama dengan sistem informasi fungsional yang lain untuk mendukung manajemen perusahaan dalam pemecahan masalah yang ada kaitannya dengan pemanufakturan produk perusahaan. Semua sistem fungsional harus ada, dan pemakainya tidak terbatas pada manajer di bidang manufaktur saja.

Model sistem informasi manufaktur seperti itu dilukiskan pada Gambar 15.7. Susunan dasarnya terdiri atas subsistem input, database, dan subsistem output.
SUBSISTEM INPUT

Ada tiga subsistem yang mengumpulkan data dan memasukkannya ke dalam database. Mereka adalah pemrosesan data, teknik industri, dan inteligensi manufaktur.

Subsistem **pemrosesan data** mengumpulkan data internal yang menjelaskan transaksi perusahaan dengan pemasoknya.

Subsistem **teknik industri** adalah seperti subsistem penelitian pemasaran, yaitu ia terutama terdiri dari proyek pengumpulan data. Sedangkan perbedaannya ialah bahwa subsistem teknik industri mengumpulkan data dari dalam perusahaan, bukannya dari lingkungan seperti yang dilakukan penelitian pemasaran.

Subsistem **inteligensi manufaktur** mengumpulkan data dari lingkungan. Anda mungkin masih ingat yang ada di Bab 14 bahwa pemasok dan serikat buruh merupakan tanggung jawab khusus dari manufaktur. Pemasok memberikan sumber bahan dan mesin maupun informasi, seperti katalog dan daftar harga. Sebagian besar data yang menjelaskan elemen serikat pekerja dalam lingkungan tak pernah menggunakan komputer, namun ia dikomunikasikan dengan lesan dan dalam bentuk dokumen tertulis.

![Diagram of Information System](image)

Gambar 15.7 Model sistem informasi manufaktur
SUBSISTEM OUTPUT

Subsistem produksi menjelaskan setiap langkah proses transformasi, yaitu dari pemesanan bahan mentah dari pemasok sampai peluncuran barang jadi ke pasar.

Subsistem inventarisasi memelihara record konseptual dari bahan selagi ia mengalir dari satu langkah produksi ke langkah berikutnya, yaitu dari bahan mentah ke pemrosesan dan akhirnya sampai barang jadi.

Subsistem kualitas digunakan untuk memastikan bahwa tingkat kualitas bahan mentah yang diterima dari pemasok memenuhi standart yang dikehendaki. Subsistem ini kemudian melaporkan mengenai tingkat kualitas pada tiap langkah proses transformasi yang penting dan yang terakhir, subsistem ini memastikan bahwa kualitas produk jadi berada pada tingkat yang diinginkan.

Subsistem biaya terus memberikan informasi kepada eksekutif perusahaan dan manajemen manufaktur mengenai biaya proses transformasi. Data mengenai biaya dapat dibandingkan dengan standart yang telah ditentukan sebelumnya. Adanya biaya yang berlebihan akan mengingatkan kita untuk membuat keputusan agar arus bahan dan proses transformasi lebih efisien.

Kita sekarang akan membahas tiap subsistem tersebut secara lebih mendalam.

SUBSISTEM PEMROSESAN DATA

Tugas pengumpulan data yang menjelaskan operasi produksi akan lebih baik bila dilakukan dengan menggunakan terminal pengumpulan data. Pekerja produksi memasukkan data ke dalam terminal dengan menggunakan kombinasi media yang dapat dibaca oleh mesin dan keyboard. Media tersebut biasanya berbentuk dokumen yang mempunyai kode bar yang dapat dibaca secara optis. Media lainnya adalah dokumen yang dilengkapi dengan penandaan pensil yang dapat dibaca secara optis dan lencana plastik yang dilengkapi dengan kepingan yang dibaca secara magnetis.

Setelah data terbaca, ia ditransmisikan ke komputer sentral tempat ia digunakan untuk memperbarui database untuk merefleksikan status sistem fisik pada saat itu.
Gambar 15.8 Lokasi terminal pengumpulan data

Gambar 15.8 menunjukkan dua belas terminal pengumpulan data yang ditempatkan di seluruh pabrik. Terminal 1 berada dalam bidang penerimaan. Ketika bahan mentah diterima dari pemasok, data penerimaan dimasukkan ke dalam terminal tersebut. Semua data penerimaan bahan kemudian digunakan untuk meneliti pengontrolan kualitas dan hasilnya dicatat di Terminal 2. Sementara penerimaan masuk ke dalam gudang stok bahan mentah, prosesnya ini dicatat pada Terminal 3. Terminal ini juga digunakan untuk mencatat keluarnya bahan menuju proses

Selain untuk melaporkan arus bahan, terminal tersebut juga mencatat penggunaan sumber manusia dan mesin. Aplikasinya akan disebut attendance reporting (pelaporan kehadiran), bila para pekerja menggunakan lencana plastik yang mereka punch in pada pagi hari dan mereka punch out pada sore harinya. Juga, mulai dihidupkannya sampai berakhirnya mesin yang digunakan untuk melakukan produksi, komputer dapat menentukan berapa lama mesin tersebut digunakan.

Karena sistem pengumpulan data mencatat penggunaan ketiga sumber manufaktur utama (bahan, personel, dan mesin), maka ia secara efektif mencatat setiap proses produksi yang penting. Manajemen manufaktur dapat menggunakan database yang memadai ini untuk memonitor aktivitas keseluruhan sistem produksi.

SUBSISTEM TEKNIK INDUSTRI

Insinyur industri (II) mengawasi operasi manufaktur dan membuat rekomendasi untuk perbaikan. II adalah jenis analis sistem yang mengkhususkan diri pada disain dan operasi sistem fisik, namun juga mempunyai pengetahuan mengenai sistem konseptual. II dapat terlibat dalam perancangan setiap subsistem output dari sistem informasi manufaktur dan juga sistem pemrosesan data input.

Bagian tugas II yang penting adalah menyusun standart produksi, yang merupakan unsur penting dalam penerapan manajemen dengan pengecualian pada bidang manufaktur. II membuat standart dengan cara mempelajari proses produksi agar dapat menentukan berapa lama proses tersebut berlangsung. Standart tersebut disimpan dalam database dan dibandingkan dengan data penampilan yang sebenarnya yang ditunjukkan oleh sistem pemrosesan data. Varian kekacauan dilaporkan kepada manajemen.
SUBSISTEM INTELLIGENSI MANUFAKTUR

Baik pemrosesan data maupun teknik industri mengumpulkan data terutama secara internal. Namun mereka perlu juga mengumpulkan data yang menjelaskan aktivitas elemen lingkungan yang menjadi tanggung jawab fungsi manufaktur. Elemen tersebut adalah serikat pekerja dan pemasok. Serikat pekerja memberikan sumber personel dalam berbagai perusahaan dan mempengaruhi cara penggunaan sumber tersebut. Pemasok memberikan sumber bahan dan mesin.

Walaupun pabrik telah diotomatisasi dengan baik, ia masih menugaskan manusia untuk memelihara dan memonitor mesinnya. Semua organisasi juga membutuhkan sumber bahan dan mesin yang diperoleh dari pemasok. Manajer manufaktur harus memelihara sumber pekerja dan bahan serta mesin bila menginginkan mereka dapat digunakan ketika diperlukan.

INFORMASI SERIKAT PEKERJA

Manajer manufaktur memberikan perhatian khusus kepada elemen serikat pekerja dari lingkungan bila sebagian atau semua sumber personelnya adalah anggota serikat pekerja tersebut. Kontrak dibuat antara perusahaan dan serikat pekerja. Kontrak ini menjelaskan harapan dan kewajiban kedua pihak. Informasi yang menjelaskan penampilan yang sebenarnya dari perusahaan dan anggota serikat harus dirangkum, sehingga manajemen dapat memastikan apakah isi kontrak tersebut telah dapat dicapai. Gambar 15.9 menunjukkan bahwa sistem formal dan informal digunakan untuk menghasilkan arus informasi serikat pekerja.

Gambar 15.9 Arus informasi serikat pekerja

Arus informasi formal dapat juga menghubungkan manajemen manufaktur dengan manajemen tingkat atas. Arus ini terdiri atas laporan yang menjelaskan tingkat pelaksanaan kontrak dengan serikat pekerja.

Sistem Informal. Arus informasi antara pekerja dan manajemen manufaktur biasanya bersifat informal. Arus informasi ini adalah kontak antara pekerja dan supervisor yang dilakukan tiap hari. Arus ini dapat dibuat lebih formal dengan cara
menjadwal peninjauan penampilan per tahun dan dengan cara menggabungkan sistem laporan berkala.

Ada juga hubungan komunikasi informal antara pengurus serikat pekerja, departemen hubungan industri perusahaan, dan manajemen tingkat atas. Pihak ini bekerja sama dalam menyelesaikan masalah yang berkenaan dengan pekerja.

Gambar 15.9 memberikan pedoman yang baik untuk menganalisisaruns informasi personel dari lingkungan dan untuk membuat keputusan mengenai cara penggabungan arus tersebut dengan subsistem inteligensi manufaktur. Teknik mengenai sistem inteligensi pemasaran, yang dijelaskan pada Bab 14, dapat juga diterapkan disini. Sebagai contoh, inteligensi yang berhubungan dengan sumber personel dapat diperoleh dari pelayanan data online, seperti BRS dan DIALOG, dan dapat dikelola dengan DBMS yang berorientasi teks, seperti INQUIRE/Text. Isi database dapat digunakan oleh manajemen perusahaan dengan cara penyebaran informasi yang selektif.

INFORMASI PEMASOK

Kebanyakan departemen pembelian mempunyai beberapa tenaga pembelian, dan biasanya mereka dikhushukan pada kelas bahan tertentu. Sebagai contoh, seorang pembeli akan dikhushukan untuk menangani komponen elektronik, sedangkan lainnya untuk menangani bahan perekat.

Pemilihan pemasok yang dapat diandalkan merupakan elemen kunci dalam pencapaian kualitas dan efisiensi produksi. Bahan yang dipesan harus tiba sesuai dengan jadwal yang ditetapkan dan harus memenuhi tingkat kualitas yang dikehendaki. Salah satu cara untuk membangun hubungan dengan pemasok yang dapat diandalkan adalah dengan melihat pemasok potensial yang sebelumnya. Penglihatan pemasok ini terdiri atas empat langkah:

1. Tiap pemasok yang potensial diberi *kuesener* yang menanyakan informasi mengenai sumber produksi dan informasi mengenai kualitas. Data dari form kuesener ini disimpan di dalam database dan terus dipantau.

3. Tenaga pembelian *mengunjungi pabrik pemasok* untuk melakukan pengamatan mengenai prosedur pengontrolan kualitas.

4. Tenaga representatif pemasok diundang untuk *mengunjungi pabrik perusahaan* agar bisa lebih mengenal bahan yang dibutuhkan perusahaan dalam produksi. Ini merupakan cara yang efektif untuk memberitahu pemasok mengenai pentingnya kualitas bagi bahan yang diperlukannya.

Bila kita telah memilih pemasok, tenaga pembelian masih tetap melihat kemampuan pemasok. Data mengenai pemasok dapat diperoleh dari pemasok tersebut melalui pengawas kontrol kualitas dan unit pelayanan pelanggan perusahaan pemasok tersebut. Gambar 15.10 melukiskan sumber informasi pemasok ini.

Gambar 15.10 Input ke record pemasok

Informasi diperoleh dari *pemasok* dengan cara berikut:

* Tenaga penjual dari perusahaan pemasok melakukan kunjungan kepada tenaga pembelian dan memperlihatkan manual dan katalog.
* Tenaga bagian pembelian mengontak pemasok melalui telpon untuk menanyakan beberapa hal tertentu. Untuk melakukan hal ini, akan sangat baik bila digunakan ISDN atau videotext.

* Setiap kali perusahaan memperoleh bahan dari pemasok, sistem pemrosesan data membuat record atas transaksi tersebut. Record tersebut disimpan dalam database bersama dengan data yang diperoleh dari form hasil survey pemasok dan analisis keuangan dari perusahaan pemasok.

Data tambahan diberikan oleh pengawas kontrol kualitas selagi bahan mengalir sepanjang proses produksi. Yang terakhir, informasi pemasok dihasilkan oleh unit pelayanan pelanggan sebagai hasil dari perbaikan dan penggantian unit purna jual.

Record pemasok yang lengkap memberikan analisis mengenai organisasi maupun penampilan bahannya, mulai dari penerimaan sampai penggunaannya yang terakhir.

Ini mengakhiri pembahasan kita mengenai cara data dimasukkan ke dalam sistem informasi manufaktur oleh ketiga subsistem input tersebut. Pembahasan selanjutnya adalah mengenai subsistem output.

SUBSISTEM PRODUKSI

Manajemen manufaktur menggunakan subsistem produksi terutama untuk mengelola proses produksi harian, seperti yang digambarkan oleh proses pembuatan lampu sepeda pada Bab 9. Untuk menangani pemrosesan harian ini, sebaiknya digunakan MRP II atau JIT, dan mereka ini akan bisa dimanfaatkan oleh manajemen perusahaan sekaligus para eksekutif perusahaan.

DUKUNGAN DALAM PENCIPTAAN FASILITAS PRODUKSI

Penggunaan lain dari subsistem produksi adalah untuk memberi kandukungan kepada manajer dalam membuat fasilitas produksi yang baru. Keputusan seperti ini biasanya dibuat oleh manajemen tingkat puncak karena adanya pengaruh jangka panjang dan jumlah investasi yang besar. Jika perusahaan mempunyai komite eksekutif atau komite manajemen yang terdiri atas para eksekutif dari bidang fungsional, mungkin keputusan tersebut dapat dibuat oleh komite tersebut.
KEPUTUSAN UNTUK MEMBANGUN PABRIK BARU

Pasti ada sejumlah alasan mengapa diperlukan pabrik baru. Mungkin pabrik yang sudah ada tidak dapat digunakan lagi atau kuno. Mungkin pasar dari produk perusahaan telah berubah dan pabrik yang ada tidak lagi mempunyai lokasi yang tepat. Atau, mungkin gedung yang telah ada tidak dapat menangani volume yang meningkat.

KEPUTUSAN MENGENAI LOKASI PABRIK

Bila keputusan untuk membangun pabrik baru telah ditetapkan, maka selanjutnya perlu menentukan dimana lokasi pabrik baru tersebut. Pada point ini, bisa jadi eksekutif menyerahkan tugas untuk membuat keputusan ini kepada manajer menengah dari fungsi manufaktur. Manajer manufaktur dapat diorganisir menjadi sebuah team proyek untuk memberi saran kepada eksekutif mengenai cara memecahkan masalah teknis yang akan muncul.

Menentukan Wilayah. Pertama kali, manajer harus menentukan wilayah tertentu di Amerika Serikat atau di negara lain. Beberapa faktor yang mempengaruhi keputusan ini adalah pemusatan pelanggan, keberadaan pasokan tenaga kerja, keberadaan bahan mentah, iklim, dan kekuatan kesatuan organisasi.

Menentukan Kota. Bila wilayahnya telah ditentukan, manajer tersebut harus memutuskan kota tertentu. Keputusan ini dibuat dengan mempertimbangkan faktor, seperti pajak, transportasi; layanan umum (polisi, pemadam kebakaran, dan sebagainya), perilaku masyarakat, sumber budaya, dan pertimbangan manajemen.

Menentukan Lahan Dalam Kota. Yang terakhir, manajemen harus memilih lahan tertentu dalam kota yang telah ditentukan tersebut. Beberapa faktor yang mempengaruhi adalah harga tanah, transportasi umum, keperluan pabrik, dan pembatasan wilayah.

Keputusan wilayah, kota, dan lahan bersifat semi terstruktur. Beberapa faktor, seperti harga tanah, pajak, dan fasilitas transportasi, dapat diukur secara kuantitatif. Faktor yang lainnya, seperti tingkah laku masyarakat dan sumber budaya, sulit untuk diukur.

Subsistem produksi dapat membantu manajemen untuk membuat keputusan mengenai lokasi ini. Model matematis dapat digunakan untuk menangani bagian masalah yang terstruktur. Teknik yang disebut pemrograman linier seringkali digunakan untuk membuat keputusan jenis ini.
PEMROGRAMAN LINIER

Pemrograman linier atau PL adalah teknik yang digunakan untuk mengidentifikasi pemecahan terbaik terhadap situasi yang statis. Kata pemrograman berarti bahwa pemecahan dapat diidentifikasi dengan sejumlah presisi tertentu. Kata linier berarti bahwa ada rasio konstan diantara variabel. Sebagai contoh, jika investasi sebesar $200 juta akan menciptakan pabrik yang dapat memproduksi 8.000 unit per hari, maka investasi sebesar $400 juta akan menciptakan gedung yang akan dapat memproduksi 16.000 per hari. Hubungan linier seperti itu jarang muncul dalam bidang bisnis, namun manajer harus menerima PL sebagai cara yang efektif untuk menangani faktor yang lebih kompleks, yang dapat mempengaruhi keputusan.

PL memfokuskan diri pada masalah manajemen yang umum, guna mencapai tujuan tertentu dengan sumber yang terbatas. Dalam PL, sumber yang terbatas ini disebut kendala (constraint), dan tujuannya disebut fungsi tujuan (objective function). Tujuan dapat memaksimalkan sesuatu, seperti volume produksi, atau meminimalkan sesuatu, seperti biaya produksi.

SKENARIO LOKASI PABRIK

Anggaplah bahwa suatu perusahaan mempunyai tiga pabrik, satu di Denver, satu di St. Louis, dan satunya di Pittsburgh. Pabrik ini menghasilkan lemari es, yang dikirimkan ke pusat distribusi di Los Angeles, Seattle, Atlanta, dan New York. Gambar 15.11 menunjukkan lokasi pabrik (P) dan pusat distribusi (D), dan menunjukkan biaya pengiriman unit dari tiap pabrik ke pusat distribusi.

Perusahaan berusaha untuk meminimalkan biaya pengiriman dengan cara mengirimkan unit tersebut dari pabrik yang terdekat dengan tiap pusat distribusi. Hal ini tidak selalu bisa dilakukan karena pabrik tersebut mempunyai kapasitas yang berlainan dan pusat distribusi melayani pasar yang tingkat permintaannya juga berbeda.
Gambar 15.11 Produksi dan jaringan distribusi

Kapasitas pabrik adalah:
Pittsburgh
St. Louis
Denver

10.000 unit
15.000 unit
23.000 unit

Tingkat permintaan pusat distribusi adalah:
Atlanta
Seattle
Los Angeles
New York

12.500 unit
10.000 unit
8.000 unit
17.500 unit
Perusahaan menggunakan PL untuk mengalokasikan output pabrik menurut permintaan pusat distribusi. Dengan menggunakan model interaktif, biaya pengiriman, kapasitas, dan permintaan dapat dimasukkan ke dalam terminal atau mikro. Interface model tersebut menggunakan teknik tanya jawab untuk memberi pedoman kepada pemakai dalam memasukkan data, seperti terlihat pada Gambar 15.12.

![Diagram](image-url)

Gambar 15.12 Dialog model - dari iiga pabrik
Model tersebut meminta data dengan menekan ENTER, diikuti dengan spesifikasi data yang diperlukan. Data yang dimasukkan oleh pemakai nampak pada baris di bawah dan di sebelah kanan dari simbol kurSOR []. Model tersebut menggunakan istilah asal (origin) untuk pabrik dan istilah tujuan (destination) untuk pusat distribusi.

Tabel 15.1 Alokasi pengiriman yang optimal - dari tiga

<table>
<thead>
<tr>
<th>Plant</th>
<th>Atlanta</th>
<th>Seattle</th>
<th>Los Angeles</th>
<th>New York</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pittsburgh</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10,000</td>
</tr>
<tr>
<td>St. Louis</td>
<td>7,500</td>
<td>0</td>
<td>0</td>
<td>7,500</td>
</tr>
<tr>
<td>Denver</td>
<td>5,000</td>
<td>10,000</td>
<td>8,000</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabel 15.2 Penghitungan biaya pengiriman - dari tiga pabrik

<table>
<thead>
<tr>
<th>Plant</th>
<th>Atlanta</th>
<th>Seattle</th>
<th>Los Angeles</th>
<th>New York</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pittsburgh</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10,000</td>
</tr>
<tr>
<td>St. Louis</td>
<td>7,500</td>
<td>0</td>
<td>0</td>
<td>7,500</td>
</tr>
<tr>
<td>Denver</td>
<td>5,000</td>
<td>10,000</td>
<td>8,000</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\text{.075} \times 10,000 = 7,500 \]

\[\text{1.35} \times 7,500 = 10,125 \]

\[\text{1.50} \times 5,000 = 7,500 \times 1.75 = 12,400 \]
Pada bagian bawah printout tersebut adalah matriks yang menunjukkan jumlah unit yang akan dikirimkan dari tiap pabrik ke tiap pusat distribusi untuk meminimalkan biaya. Tepat di bawah matriks adalah jumlah biaya total, yaitu $63.275.

| THIS PROGRAM WILL SOLVE A TRANSPORTATION PROBLEM USING MATRICES, AFTER EACH TIME YOU ENTER DATA, PLEASE PRESS THE RETURN KEY. ENTER THE NUMBER OF DESTINATIONS |
| : |
| 4 |

ENTER THE NUMBER OF ORIGINS.

| : |
| 4 |

ENTER THE UNIT COST FOR SHIPPING FROM EACH ORIGIN TO THE FIRST DESTINATION WITH A SPACE BETWEEN EACH.

| : |
| 1.10 1.35 1.50 0.75 |
| 1.35 2.05 1.75 2.00 |
| 1.50 1.60 1.55 1.40 |

ENTER THE UNIT COST FOR SHIPPING FROM EACH ORIGIN TO THE FIRST DESTINATION WITH A SPACE BETWEEN EACH.

| : |
| 0.75 1.10 1.80 1.15 |

ENTER THE AMOUNTS AVAILABLE AT EACH ORIGIN WITH A SPACE BETWEEN EACH.

| : |
| 6000 15000 23000 4000 |

ENTER THE AMOUNTS NEEDED AT EACH DESTINATION WITH A SPACE BETWEEN EACH.

| : |
| 12.500 10000 8000 17500 |

THIS MATRIX SHOWS THE OPTIMAL AMOUNTS OF UNITS TO BE SHIPPED ACCORDING TO ORIGIN (DOWN) AND DESTINATION (ACROSS).

0	0	0	6000
3500	0	0	11500
5000	10000	8000	0
4000	0	0	0

TOTAL COST IS 62275

Gambar 15.13 Dialog model - dari empat pabrik

Printout model pada Gambar 15.12 tidak menunjukkan bagaimana gambaran biaya dihitung; yang lengkapnya terlihat ada Tabel 15.2.

Penambahan pabrik di Orlando tidak akan mengurangi biaya pengiriman secara besar, yaitu hanya $1.000 (jadi biaya pengiriman menjadi $62.275). Penghematan tersebut tidak menjadi faktor yang berpengaruh dalam memutuskan tempat pembangunan pabrik di Orlando itu, namun mungkin faktor lain yang tidak nampak dalam model yang mempengaruhi keputusan tersebut. Yang harus dipertimbangkan juga adalah pelayanan pelanggan yang lebih baik dan ekspansi pasar jangka panjang.

SUBSISTEM INVENTARISASI

Manajemen manufaktur selalu bertanggung jawab atas inventarisasi bahan mentah dan inventarisasi proses kerja. Pemasaran, dalam beberapa contoh, bertanggung jawab atas inventarisasi barang jadi. Record inventarisasi menunjukkan apa yang harus ada dan perhitungan fisiknya, yang disebut cycle counts, dibuat secara berkala untuk memastikan bahwa record konseptual adalah benar.
BIAYA PEMELIHARAAN

Biaya pemeliharaan atau kepengurusan inventarisasi tahunan bisa saja tinggi, tergantung pada jenis bahan yang disimpan. Sebagai contoh, perusahaan farmasi yang menyimpan produk obat-obatan dalam ruang yang terkontrol lingkungannya dengan pengamanan yang sangat ketat akan membutuhkan biaya yang tinggi. Sebaliknya, perusahaan pemasok minyak membutuhkan biaya yang rendah untuk menyimpan minyak tersebut dalam pipa yang ditempatkan di luar.

Biaya pemeliharaan (yang juga disebut carrying cost) biasanya dinyatakan sebagai persentasi biaya tahunan dari tiap item, dan hal ini mencakup faktor seperti pembusukan, pencurian, keusangan, pajak, dan asuransi. Sifat biaya pemeliharaan yang penting adalah bahwa ia bervariasi langsung dengan tingkat inventarisasi, yaitu lebih tinggi tingkatnya maka akan lebih tinggi biayanya. Oleh karena itu, jika perusahaan ingin meminimalkan biaya pemeliharaan, maka harus dijaga agar tingkat inventarisasi dalam keadaan rendah.

Gambar 15.14 Pengaruh jumlah pesanan pada tingkat inventarisasi rata-rata
TINGKAT INVENTARISASI

Tingkat inventarisasi perusahaan adalah sangat penting karena ia menggambarkan investasi yang dapat diukur. Uang yang terbebankan pada inventarisasi tersebut tidak dapat digunakan untuk yang lainnya.

Jika perusahaan ingin menjaga tingkat inventarisasi tetap rendah untuk meminimalkan investasinya, maka salah satu caranya adalah dengan melakukan pemesanan dalam jumlah sedikit. Cara lainnya adalah dengan menetapkan point pemesanan kembali yang lebih rendah. Manajemen manufaktur dapat menggunakan model matematis untuk mensimulasi pengaruh strategi keputusan alternatif ini.

BACKORDER

Pada bab sebelumnya kita telah mengetahui bahwa stok pengaman digunakan untuk mencegah atau meminimalkan kekosongan stok. Stok pengaman dapat juga mengurangi jumlah backorder. Backorder adalah pesanan dari pelanggan yang tak dapat dipenuhi karena kekosongan stok. Sebagai akibatnya, perusahaan mengatakan, “Kami tidak bisa memenuhi pesanan anda sekarang ... namun akan memenuhinya bila kami menerima penambahan stok.”

Backorder dapat dipandang sebagai keseimbangan yang ada adalah negatif, seperti terlihat pada Gambar 15.15. Ketika penambahan stok tiba, maka backorder akan dipenuhi, namun keseimbangan yang ada tidak akan mencapai tingkat normal - Tingkat 1. Namun, ia akan mencapai tingkat yang lebih rendah - Tingkat 2. Kenyataannya, urutan penggunaan yang baru yang dimulai dengan tingkat awal yang lebih rendah akan meningkatkan kemungkinan terjadinya kekosongan stok atau terjadinya backorder.
Gambar 15.15 Backorder berarti keseimbangan yang ada adalah negatif

BIAYA PEMBELIAN

Kita telah mengetahui bahwa ada alasan yang tepat mengapa perusahaan menjaga tingkat inventarisasinya tetap rendah. Hal ini akan selalu bisa diterima jika tak ada biaya lain yang meningkat selagi jumlah pesanan menurun. Biaya lain ini adalah biaya pembelian, yang meliputi biaya lain yang muncul ketika bahan dipesan, yaitu waktu yang digunakan oleh tenaga pembelian, biaya telepon, waktu yang digunakan oleh sekretaris, form pesanan pembelian, dan sebagainya.

Untuk membuat pesanan pembelian mungkin dibutuhkan biaya campuran dari berbagai biaya yang kecil, mungkin $100, tanpa mempertimbangkan jumlah unit yang dipesan. Oleh karena itu, lebih sedikit unit yang dipesan, maka akan lebih tinggi biaya pembelian per unitnya. Jika perusahaan memesan satu unit pada sekali waktu, maka biaya pembelian per unit adalah $100. Biaya ini dapat dikurangi menjadi $50 per unit jika memesan dua unit, menjadi $33,33 jika memesan 3 unit, dan seterusnya.

JUMLAH PESANAN EKONOMIS

Rumus EOQ (jumlah pesanan ekonomis) menimbang biaya pemeliharaan dengan biaya pembelian dan mengidentifikasi biaya kombinasi yang terendah.
Diagram dari teknik ini terlihat pada Gambar 15.16. EOQ ditetapkan untuk tiap item inventarisasi bahan mentah dan dimasukkan sebagai field dalam record inventarisasi.

Gambar 15.16 EOQ menggambarkan biaya total yang terendah

JUMLAH MANUFAKTUR EKONOMIS

Jumlah ekonomis yang lain dapat digunakan untuk inventarisasi barang jadi. Ia adalah *jumlah manufaktur ekonomis* (EMQ), yang juga disebut *economic lot size*. EMQ menimbang biaya yang diakibatkan oleh inventarisasi dengan biaya ketidakefisienan produksi.

EOQ dan EMQ adalah optimal, karena ia tidak dapat ditingkatkan lagi tanpa mengubah nilai variabelnya. Bila jumlah telah dihitung, maka subsistem inventarisasi dapat membuat keputusan mengenai jumlah pemesanan. Manajer hanya akan terlibat bila muncul situasi kekecualian.
SUBSISTEM KUALITAS

Bila kita melihat perusahaan yang telah berhasil melakukan pengontrolan kualitas produksinya dengan baik, kita akan mendapatkan hal sebagai berikut:

* Manajemen puncak secara aktif menanyakan terus kualitas produksi. Dalam beberapa perusahaan, pokok bahasan kualitas selalu menjadi agenda dalam meeting komite eksekutif.

* Target tahunan juga untuk menentukan tingkat kualitas. Target ini dapat ditetapkan untuk tiap point inspeksi pada jalur assembling.

* Informasi yang menjelaskan kerusakan jalur assembling dan kegagalan field secara cepat diberitahukan kepada manajemen.

* Mesin produksi dipelihara dengan baik, bidang kerja dijaga kebersihan dan kerapiannya, dan para pekerja dilatih dengan baik.

* Ada penekanan tentang pentingnya kualitas bahan mentah yang baik, dan pengawas kontrol kualitas berperan dalam menentukan pemasok.

Jika perusahaan ingin bersaing di pasaran dunia, maka tingkat kualitas harus dijaga tetap tinggi dan biaya harus dijaga agar tetap rendah. Inilah tantangan yang sekarang ini harus dihadapi manajemen manufaktur.
SUBSISTEM BIAYA

Subsistem biaya dapat berisi program yang digunakan untuk membuat laporan berkala dan laporan khusus. Laporan berkala dapat dicetak dan didistribusikan, atau ia dapat disimpan dalam form yang telah diformat sebelumnya ke dalam database, agar ia dapat dipanggil kembali nantinya.

Manajemen manufaktur menggunakan PM sebagai alat untuk meminimalkan **breakdown hours** (waktu kerusakan), yaitu waktu peralatan mesin tidak dapat digunakan karena menunggu perbaikan. Bila breakdown hours yang didaftar pada kolom tengah dalam laporan Gambar 15.17 dianggap terlalu tinggi untuk frekuensi pemeliharaannya, maka pemeliharaannya harus dilakukan dengan lebih sering. Bila breakdown hours minimal, maka pemeliharaan dapat dilakukan kadang-kadang, sehingga bisa memberikan kesempatan mekanik untuk memelihara mesin yang lainnya.

Manajemen manufaktur dapat juga menggunakan laporan untuk menentukan waktu pembelian peralatan pengganti. Dapat anda perhatikan bahwa format laporan mencerminkan manajemen dengan pengecualian. Bila biaya pemeliharaan per jam kerja untuk sebuah mesin melampaui $0,15, maka ia akan diberi tanda bintang. Manajer dapat melihat kolom yang bertanda bintang untuk mengetahui adanya kekecualian, sehingga ia dapat membuat keputusan untuk melakukan penggantian.

Program pengontrolan biaya yang efektif terbangun dari dua unsur pokok: (1) standar penampilan yang baik, dan (2) sistem laporan yang memberitahukan kelengkapan aktivitas yang terjadi. Jaringan pengumpulan data dapat memberikan kontribusi kepada dua hal tersebut. Pada waktu pekerja manufaktur (operator mesin, pengawas, mekanik pemeliharaan, dan sebagainya) melakukan tugas mereka, mereka dapat menggunakan terminal pengumpulan data untuk mencatat aktivitas, sehingga
manajemen manufaktur mengetahui apa yang sedang terjadi di pabrik. Data yang sebenarnya ini dapat juga diakumulasikan sepanjang waktu dan dikombinasikan dengan input yang lain, seperti input dari EIS, untuk menyusun standart dan menjaganya agar tetap seperti biasanya.

<table>
<thead>
<tr>
<th>EQUIPMENT MAINTENANCE SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPMENT NUMBER</td>
</tr>
<tr>
<td>1120</td>
</tr>
<tr>
<td>1161</td>
</tr>
<tr>
<td>1178</td>
</tr>
<tr>
<td>1183</td>
</tr>
<tr>
<td>1195</td>
</tr>
<tr>
<td>2005</td>
</tr>
<tr>
<td>2103</td>
</tr>
<tr>
<td>2205</td>
</tr>
<tr>
<td>2213</td>
</tr>
</tbody>
</table>

Gambar 15.17 Laporan pemeliharaan

BAGAIMANA MANAJER MENGUNAKAN SISTEM INFORMASI MANUFAKTUR

Sistem informasi manufaktur dapat digunakan untuk menciptakan sekaligus mengoperasikan sistem produksi fisik. Informasinya digunakan oleh para eksekutif perusahaan, para manajer di bidang manufaktur, dan juga untuk manajer di bidang yang lain. Penggunaan informasi ini ditunjukkan pada Tabel 15.3.

Eksekutif, termasuk wakil direktur bidang manufaktur, menerima informasi dari semua subsistem output dalam bentuk ringkas. Mandor pabrik juga menggunakan output ringkas yang menjelaskan operasi secara keseluruhan.

Manajer di bidang pemasaran dan keuangan kemungkinan juga akan menggunakan output tersebut. Hal ini terutama akan terjadi bila subsistem produksi
didasarkan pada konsep MRP II, yang digunakan untuk memadukan manufaktur dengan bidang lain yang ada dalam perusahaan. Pemasar juga ingin mengetahui semua aspek mengenai produksi (biaya, kualitas, dan keberadaan), karena faktor ini akan mempengaruhi penjualan produk. Manajer keuangan juga harus mengetahui subsistem inventarisasi agar ia dapat secara tepat memberikan rekomendasi mengenai investasi inventarisasi, dan juga perlu mengetahui subsistem produksi agar ia dapat memberi rekomendasi mengenai pembangunan pabrik baru atau ekspansi.

Tabel 15.3 Pemakai sistem informasi manufaktur

<table>
<thead>
<tr>
<th>User</th>
<th>Subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inventory</td>
</tr>
<tr>
<td>Vice-President of manufacturing</td>
<td>X</td>
</tr>
<tr>
<td>Other executives</td>
<td>X</td>
</tr>
<tr>
<td>Plant superintendent</td>
<td>X</td>
</tr>
<tr>
<td>Manager of planning and control</td>
<td>X</td>
</tr>
<tr>
<td>Manager of engineering</td>
<td>X</td>
</tr>
<tr>
<td>Manager of quality control</td>
<td>X</td>
</tr>
<tr>
<td>Director of purchasing</td>
<td>X</td>
</tr>
<tr>
<td>Manager of inventory control</td>
<td>X</td>
</tr>
<tr>
<td>Other managers</td>
<td>X</td>
</tr>
</tbody>
</table>

LANGKAH BERIKUTNYA - MANUFAKTUR KOMPUTER TERPADU

Aplikasi komputer dalam bidang manufaktur secara relatif mengalami pola pertumbuhan yang tak terencana sebagian besar sama dengan cara perkembangan otomatisasi kantor. Aplikasi komputer telah berkembang pada beberapa sektor sekaligus, dan manajer manufaktur hanya memanfaatkan peluang tersebut. Masalahnya adalah bahwa sekarang terdapat begitu banyak aplikasi komputer yang kita sulit untuk mengurus semuanya.
CIM (computer-integrated manufacturing) atau manufaktur komputer terpadu adalah filsafat manajemen yang menyatakan bahwa semua teknologi produksi dan informasi harus bekerja secara bersama-sama. CIM adalah suatu cara memandang bahwa sumber produksi perusahaan adalah sebagai sebuah sistem dan cara pendefinisian, pendanaan, pengelolaan, dan pengkoordinasian semua proyek peningkatan, kaitannya dengan sejauh mana mereka ini berpengaruh terhadap keseluruhan sistem tersebut. CIM adalah pandangan sistem mengenai produksi, bukan pandangan molekular yang hanya berhubungan dengan bagian-bagian secara terpisah.

Beberapa perusahaan telah berhasil menerapkan CIM atau telah dapat mengikuti filsafatnya dengan baik. Allen-Bradley telah membangun pabrik baru di Milwaukee dan ia mendasarkan pekerjaannya tersebut dengan filsafat CIM. Spekulasi usahanya ini berhasil, yaitu dengan menghilangkan inventarisasi bahan mentah secara keseluruhan dan menghasilkan tingkat kualitas yang hanya satu dari satu juta yang ditolak.

Bila diterapkan secara penuh dalam perusahaan manufaktur, CIM dapat memudahkan sistem produksi fisik dengan CBIS, seperti terlihat pada Gambar 15.18. CAD memberikan interface antara dua jenis sistem utama, dengan cara menghasilkan spesifikasi desain yang digunakan untuk memberikan pedoman kepada CAM dan perobatan dalam sistem fisik.

RINGKASAN

Manajer manufaktur telah menerapkan komputer dalam dua cara dasar, yaitu untuk mengontrol dan menjalankan proses produksi, dan berfungsi sebagai sistem informasi.

CAD, CAM, dan perobatan digunakan dalam sistem produksi fisik sebagai cara untuk mencapai dan memelihara persaingan di pasar. Bentuk otomatisasi pabrik ini dimaksudkan untuk menjalankan tugas dengan lebih baik dan juga untuk mengurangi biaya pekerja dan bahan.

Selama akhir tahun 1960-an dan awal tahun 1970-an, MRP menjadi topik yang paling menarik dalam manufaktur. Pertama kali penggunaannya terbatas secara proaktif dan bukannya reaktif, hanya untuk manajemen bahan, dan kemudian ia mengalami perluasan dan terpadu dengan sistem lain yang ada di seluruh perusahaan. Perluasan dari MRP ini dinamakan MRP II.
Gambar 15.18 CIM meliputi sistem fisik dan konseptual

Selama tahun 1980-an, perusahaan mendapatkan cara lain dalam manajemen produksinya, yaitu dengan menggunakan JIT. JIT adalah konsep yang melakukan revolusi terhadap dua hal. Pertama, ia menjadikan sifat bisnis di Amerika Serikat menjadi bersifat produksi massal. Kedua, ia tidak menggunakan teknologi komputer dalam mengurus sistem fisik untuk mengontrol arus kerja.

Akhirnya terbukti bahwa semakin lama, perusahaan tidak bisa mengandalkan JIT sepenuhnya. Perusahaan menyadari bahwa ia tidak bisa meninggalkan MRP sepenuhnya. Beberapa perusahaan bisa lebih mendapatkan keuntungan dari JIT, sedangkan beberapa yang lainnya bisa mendapatkan manfaat yang lebih banyak dari MPR. Sedangkan ada juga yang lain yang memadukan JIT ke dalam MRP-nya.

Sistem informasi manufaktur terdiri atas subsistem input, database, dan subsistem output. Subsistem input meliputi pemrosesan data, teknik industri, dan inteligensi
manufaktur. Subsistem inteligensi manufaktur mengumpulkan data lingkungan yang menjelaskan serikat pekerja dan pemasok. Subsistem teknik industri menumpulkan informasi internal yang menjelaskan sistem produksi fisik. Subsistem pemrosesan data mengumpulkan data lingkungan sebagai hasil dari transaksi dengan pemasok.

Empat subsistem output menelusuri arus bahan sepanjang bidang produksi. Subsistem produksi memberikan ukuran waktu, subsistem inventarisasi memberikan ukuran jumlah, subsistem kualitas dan biaya membahas dua ukuran tersebut. Subsistem produksi mendukung eksekutif dan manajer dalam membuat keputusan mengenai pembangunan fasilitas baru. Dan jika diputuskan untuk membangunnya, manajer bisa menentukan tempatnya.

CIM adalah filsafat manajemen yang ditujukan untuk memadukan semua sistem informasi berdasarkan komputer yang terpisah, ditambah pula penggabungan otomatisasi pabrik. Ini akan merupakan trend baru dalam manufaktur di masa tahun 1990-an nanti. Untuk merealisasikan hal ini dalam ekonomi internasional akan menjadi tantangan yang sulit bagi manajer maupun spesialis informasi.

ISTILAH KUNCI

Catatan: Istilah kunci ini disusun berdasarkan urutan kemunculannya dalam bab ini.

CAD (komputer untuk desain), CAE (komputer untuk teknik mesin), CAM (komputer untuk manufaktur), robot industri (IR), perrobotan, sistem point pemesanan kembali, kekosongan stok, point pemesanan kembali (ROP), point pemesanan, lead time, stok pengaman bahan (MRP), perencanaan keperluan, jadwal produksi, jadwal pesanan terencana, sistem informasi manufaktur, subsistem pemrosesan data, teknik industri, dan inteligensi manufaktur, subsistem produksi, inventarisasi, kualitas, dan biaya, insinyur industri (II), pemrograman linier (LP), hambatan, fungsi tujuan, biaya pemeliharaan, carrying, induk cost, backorder, pesanan biaya pembelian.
laporan peluncuran
perencanaan sumber manufaktur (MRP-II)
just-in-time (JIT)
lot size
kanban
EOQ (jumlah pesanan ekonomis)
EMQ (jumlah manufaktur ekonomis, economic lot size)
CIM (manufaktur komputer terpadu)

KONSEP DASAR

CAD/CAM dan perobotan sebagai cara untuk meningkatkan sistem fisik, bukannya sistem konseptual

Sifat terpadu dari penjadwalan produksi, perencanaan keperluan bahan, perencanaan keperluan kapasitas, subsistem peluncuran pesanan dalam sistem MRP II

Kesederhanaan JIT, dan sifat revolusionernya

Sistem informasi manufaktur sebagai sebuah kombinasi dari subsistem input dan output

Kemampuan terminal pengumpulan data untuk memberikan data yang menjelaskan sistem produksi fisik secara real time

Peranan insinyur industri (II) dalam menganalisis dan merancang sistem manufaktur fisik dan konseptual

Potensi pengembangan sistem formal untuk mengumpulkan dan memelihara informasi serkat pekerja dan pemasok

Penggunaan model matematis untuk mendukung pembuatan keputusan semi terstruktur mengenai lokasi pabrik

Komponen biaya inventarisasi, dan cara menjaganya agar tetap dalam keadaan minimum

Jangkauan kebijaksanaan yang luas dan praktek yang dapat mempengaruhi kualitas produk perusahaan

Bagaimana sistem informasi manufaktur mempermudah pengontrolan biaya dengan cara memberikan data untuk menyusun standart dan data yang menjelaskan operasi yang sebenarnya
PERTANYAAN

1. Bagaimana CAD mengkomunikasikan informasinya terhadap CAM?
2. Sebutkan dua cara penggunaan komputer dalam CAM!
3. Mengapa sistem point pemesanan kembali merupakan strategi yang reaktif?
4. Kapan perusahaan memutuskan untuk menggunakan stok pengaman, apakah ini akan berpengaruh terhadap point pemesanan kembali? Bagaimana mengenai tingkat inventarisasi rata-ratanya?
5. Sebutkan empat subsistem dari sistem perencanaan keperluan bahan (MRP)!
6. Data file apa yang digunakan untuk menghitung persyaratan kotor? File apa untuk menghitung persyaratan bersih?
7. Siapa yang menerima laporan pelunсuran pesanan? Apa yang akan ia lakukan dengan laporan tersebut?
8. Apa yang membedakan MRP II dari MRP?
9. Sebutkan tindakan yang dilakukan manajer untuk mempengaruhi keberhasilan MRP II!
10. Bagaimana JIT melakukan kerja di pabrik?
11. Bagaimana mempergunakan terminal pengumpulan data untuk melakukan pelaporan kerja? Bagaimana penggunaannya untuk melakukan pelaporan pekerja?
12. Bagaimana kerja II memberikan kontribusi kepada manajemen dengan pengecualian?
13. Dua elemen lingkungan apa yang menjadi fokus dari subsistem inteligensi manufaktur?
14. Sebutkan empat langkah yang dapat dilakukan dalam pengumpulan data mengenai pemasok!
15. Mengenai keputusan penentuan lokasi pabrik, mana yang terstruktur? Mana yang tak terstruktur?
16. Sebutkan dua biaya yang dimasukkan dalam rumus EOQ!
17. Bilamana EMQ digunakan sebagai pengganti EOQ?
18. Bagaimana sistem informasi manufaktur dapat memberi kontribusi terhadap pencapaian tujuan kualitas produk?
19. Mengapa manajer pemasaran juga harus mengetahui biaya manufaktur?

20. Jelaskan mengapa CAD menjadi bagian dari sistem konseptual? Jelaskan mengapa ia menjadi bagian dari sistem fisik?

MASALAH

2. Rancanglah layar output untuk model lokasi pabrik LP. Tujuan anda adalah untuk membuat tampilan yang lebih mudah digunakan dari pada model yang ada pada Gambar 15.12.

3. Gunakan Monte Carlo Inventory Model (model inventarisasi Monte Carlo) dalam Software Package II (paket software II) untuk mensimulasikan pengaruh perubahan jumlah pesanan dan point pemesanan kembali.

MASALAH KASUS

NEWTONE PLASTICS, INC.

12 Juni

MEMO KEPADA: Anggota Komite Eksekutif
Dorothy Murray, Wakil Presiden Bidang Keuangan
Fred Sheinberg, Wakil Presiden Bidang Manufaktur
Andrea Willis, Wakil Presiden Bidang Pemasaran
Charles Hinkle, Wakil Presiden Bidang Pelayanan Informasi

DARI: James Whitworth, Presiden

HAL: Agenda Untuk Meeting Komite Eksekutif Berikutnya
Fred telah meminta agar topik pertama pada meeting minggu yang akan datang adalah MRP II. Ia akan mengemukakan permasalahan tersebut, dan kita dapat memutuskan apakah kita akan membahas masalah tersebut atau tidak.

16 Juni

FRED: Seperti yang telah banyak anda ketahui, kita sekarang menggunakan sistem point pemesanan kembali untuk melakukan pesanan bahan mentah. Sebagian besar industri telah mengganti sistem point pemesanan kembali dengan apa yang disebut MRP II. MRP II menggunakan penjadwalan produksi sebagai dasar untuk melakuka pesanan. Anda bisa melihat jadwal tersebut dan mengidentifikasinya ketika anda membutuhkan bahan tertentu, dan anda melakukan pesanan sebelum waktunya. Hal ini mempunyai resiko yang lebih kecil, sebab jika anda menunggu sampai tercapainya waktu point pemesanan kembali, maka mungkin pemasok tidak akan bisa memenuhi pesanan anda tadi.

CHARLES: Saya telah mendengar tentang MRP tersebut. Sebagian besar pemakai menggunakankannya dengan cara membeli software tertulis. Ini mungkin merupakan satu-satunya cara bidang Pelayanan Informasi memberi dukungan terhadap usaha tersebut, sebab kami telah menjanjikan pada programmer kami untuk menerapkan HRIS dan EIS tiga tahun yang akan datang. Namun, paket MRP tersebut hargaanya sangat mahal. Anda bisa mengeluarkan biaya sampai $1 juta, benar kan?

ANDREA: Kita baru saja melakukan otomatisasi pabrik. Saya kira, kita tidak mampu menanamkan investasi lagi untuk MRP tersebut, ya kan, Dorothy?

DOROTHY: Ya, saya kira demikian. Kita baru saja satu tahun menggunakan robot dan sekitar delapan belas bulan menggunakan CAD/CAM.

FRED: Baiklah. Namun, saya yakin bila kita mengimplementasikan MRP, maka pelanggan anda juga akan merasakan manfaatnya. Saya tidak dapat memberikan spesifikasinya sekarang, sebab saya tidak membawa bahan tersebut kesini.

ANDREA: Baiklah, bila kita tak dapat membicarakan tentang spesifikasinya, saya sarankan kita tinggalkan dulu saja pembahasan.

JAMES: Itu usul yang baik. Kita telah membahas begitu banyak hal pada hari ini. Fred, mengapa kamu tidak sekalain menyertakan manfaat MRP bagi pemasaran, agar dapat kita bahas minggu yang akan datang. Jika tak ada yang keberatan, ia akan menjadi topik pembahasan yang akan datang. Andrea, beritahu saya seluah mana sales representatif menggunakan laptop mereka yang baru.

TUGAS

Buatlah daftar mengenai manfaat yang akan didapat oleh pemasaran, bila MRP II diimplementasikan. Untuk tiap manfaat tersebut, sertakan penjelasan yang singkat (satu atau dua kalimat) mengenai bagaimana ia dapat diperoleh dengan penggunaan MRP II.

BIBLIOGRAFI TERPILIH

